Оптогенетика заиграла новыми красками
Для оптогенетики нашли два новых светочувствительных белка, посредством которых можно одновременно управлять разными нейронами — с помощью красного и синего света.
Львиную долю того, что мы знаем сегодня о нейронах и нейронных цепях, мы знаем благодаря оптогенетическим методам. Последние основаны на введении в мембрану нейронов фоточувствительного белка опсина, который под действием света открывает трансмембранный ионный канал: поток ионов изменяет поляризацию мембраны, нейрон возбуждается и отправляет импульс своим соседям. Или наоборот: поток ионов успокаивает нейрон и сводит на нет всякую активность. Опсин вводится в ДНК нейронов вместе с флюоресцирующим белком, чтобы можно было отличить нейроны с фотосистемой от прочих.
С помощью оптогенетики можно подчинить себе целую группу клеток, активировать и подавлять их по своему усмотрению и наблюдать, что при этом произойдёт в мозге. Однако до сих пор за один раз можно было управлять только одной популяцией нейронов: все они получали одинаковый опсин и тут же реагировали на свет из введённого в мозг электрода.
Но что будет, если использовать не один опсин, а два, настроенные на разные световые волны? Тогда удастся независимо оперировать сразу двумя группами нейронов, наблюдать, как они влияют друг на друга, на мозг и т. д. Словом, возможности расширяются многократно.
Именно это попытались сделать Эдуард Бойден (Edward S Boyden) и его коллеги из Массачусетского технологического института (США). Вместе с коллегами из Альбертского университета (Канада) они проанализировали 1 000 транскриптомов (полных наборов РНК, которыми обычно пользуется клетка) растений и водорослей. Опсину подошёл бы не всякий, а только тот, что совместим с нейронами млекопитающих, и таких в итоге нашлось два: один активировался в бледно-синем свете и был назван Chronos, а другой работал в красном диапазоне при длине волны 735 нм и был назван Chrimson.
В журнале Nature Methods авторы сообщают, что «синий» опсин, во-первых, срабатывал чрезвычайно быстро, а во-вторых, ему было достаточно совсем немного света, так что при совместном использовании двух белков можно было не опасаться, что Chrimson возбудится от избытка синего света, предназначенного для Chronos. С помощью двойной системы опсинов можно даже разложить одну нервную цепочку на две части, чтобы узнать, как одни нейроны влияют на другие, притом что и те и те заняты одним делом.
Преимущества двухканальной оптогенетической системы настолько очевидны, что может возникнуть вопрос, почему до сих пор такой метод нельзя было создать генетико-инженерными модификациями уже имеющихся у исследователей белков. Такие попытки, впрочем, предпринимались, но всякий раз учёным приходилось выбирать: либо белок будет работать быстро, но с интенсивным светом, либо медленно, но с более слабым освещением. Сделать так, чтобы белок действовал быстро и не требовал избытка света, никак не получалось, поэтому можно сказать, что исследователям действительно повезло найти естественный белок, удовлетворяющий всем требованиям.
Источник: Компьюлента
Читайте также:
- 3 способа сделать дом уютнее для психологического комфорта
- Добавляем изюминку в интерьер с помощью дизайнерского освещения
- «Тихий убийца» из генератора. В Украине растет число жертв угарного газа
- Как безопасно пользоваться генератором, чтобы не оказаться в больнице
- Страшнее ковида: как отключения света травмируют нашу психику — психолог
- Как правильно хранить продукты без холодильника, если нет электричества
Присоединяйтесь к нам в социальных сетях